A Nectar of Frequent Approximate Subgraph Mining for Image Classification
Niusvel Acosta Mendoza, Andrés Gago Alonso, Jesús Ariel Carrasco Ochoa, José Fco. Martínez Trinidad, José Eladio Medina Pagola
Resumen
Frequent approximate subgraph mining has emerged as an important research topic where graphs are used for modeling entities and their relations including some distortions in the data. In the last years, there has been a considerable growth in the application of this kind of mining on image classification; achieving competitive results against other approaches. In this nectar, a review of recent contributions on image classification based on frequent approximate subgraph mining is presented. We highlight the usefulness of this type of mining, as well as the improvements achieved in terms of efficiency and efficacy of the proposed frameworks.
Palabras clave
approximate graph mining; frequent approximate subgraph mining; graph-based image classification
Texto completo:
PDF (English)
Enlaces refback
- No hay ningún enlace refback.
_________________________________________________________________________________________________________
La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Saber más
_________________________________________________________________________________________________________