Algoritmos de detección de anomalías con redes profundas. Revisión para detección de fraudes bancarios

Odeynis Valdés Suárez, David Ameijeiras Sánchez, Héctor Raúl González Diez

Resumen


Los diversos avances en las ciencias y los grandes volúmenes de datos que se han generado sólo en los últimos años han sobrepasado la capacidad humana para recolectar, almacenar y comprender los mismos sin el uso de las herramientas adecuadas limitando las capacidades de detección de fraudes en las instituciones. Una forma de fraude bancario es el que ocurre con las tarjetas de crédito/débito; estas se han convertido en un método de pago muy popular en las compras online de bienes y servicios. Es por estos motivos que se realizó un análisis de los principales algoritmos de detección de anomalías basados en aprendizaje profundo enfocado en el fraude bancario. Se determinó que las arquitecturas basadas en AEs destacan en tareas no supervisadas y las (Long short-term memory) LSTM para tareas de clasificación.


Texto completo:

PDF

Enlaces refback

  • No hay ningún enlace refback.




_________________________________________________________________________________________________________

La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original.
_________________________________________________________________________________________________________

 INDEXACIÓN