Selección y ranking de rasgos para caracterizar textos irónicos

Anakarla Sotolongo-Peña, Leticia Arco, Rafael Bello

Resumen


Las opiniones textuales imponen grandes retos a las aplicaciones de minería de opinión ya que varios problemas están presentes; entre ellos: la escritura de opiniones de manera irónica o sarcástica. Una de las tendencias que existen para detectar la ironía consiste en la clasificación basada en rasgos.  En investigación anterior se propone un conjunto de rasgos que permiten detectar ironía en opiniones textuales; sin embargo, el cálculo de estos rasgos es costoso computacionalmente. Por lo que en este artículo nos proponemos estudiar dicho conjunto de rasgos con el objetivo de detectar un subconjunto de éste que discrimine entre textos cortos irónicos y no irónicos, sin afectar la eficacia de los clasificadores. El principal resultado de este trabajo consiste en la obtención de un subconjunto de rasgos que logre detectar de manera efectiva la ironía, mediante la aplicación de técnicas de selección y de ranking de rasgos, y la evaluación de varias técnicas de aprendizaje supervisado. El conjunto obtenido de siete rasgos es suficiente para discriminar entre opiniones irónicas y no irónicas, obteniéndose resultados estadísticamente comparables con aquellos obtenidos al utilizar un conjunto mayor y más complejo de rasgos.


Texto completo:

PDF

Enlaces refback

  • No hay ningún enlace refback.




_________________________________________________________________________________________________________

La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original.
_________________________________________________________________________________________________________

 INDEXACIÓN