Algoritmo de estimación de distribución basado en el aprendizaje de redes bayesianas con análisis de dependencias para problemas de optimización en enteros
Resumen
A partir del estudio del algoritmo de estimación de distribuciones (EDA) basado en poliárboles se propone e investiga la clase de algoritmos EDA que utilizan pruebas de independencias en el aprendizaje de la estructura probabilística. Estos algoritmos se conocen como EDA basados en restricciones los que definen una clase de EDA llamada algoritmos de estimación de distribuciones con restricciones (CBEDA). Como resultado se propone un nuevo algoritmo CBEDATPDA que utiliza el método de detección de dependencias de tres fases para el aprendizaje de redes Bayesianas. Los resultados experimentales demuestran que la nueva propuesta exhibe adecuadas cualidades numéricas para la solución de problemas con codificación entera como son las funciones decepcionantes y el problema de la predicción de estructuras de proteínas (PSP, del inglés, Protein Structure Prediction). Los resultados son comparados con otros algoritmos del estado del arte de la computación evolutiva, incluyendo propuestas del campo de los EDA.
Texto completo:
PDFEnlaces refback
- No hay ningún enlace refback.
_________________________________________________________________________________________________________
La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original.
_________________________________________________________________________________________________________
![]() | INDEXACIÓN | ||||||||
![]() | ![]() | ![]() | ![]() | ||||||
| |