A Systematic Literature Review on Intrusion Detection Approaches
Resumen
Nowadays, intrusion detection systems play a major role in system security. Ideally, intrusion detection systems are capable of detecting intrusions in real time to prevent intruders from causing any harm to computer systems. Intrusion detection systems can be implemented using different intrusion detection approaches with its strengths and limitations. This paper provides an overview of the strengths and limitations of the different intrusion detection approaches, including Statistical-Based Anomaly, Pattern Matching, Data Mining and Machine Learning approach. The results show that Machine Learning is the most suitable approach for implementing intrusion detection system solutions, because of its ability to work as an automated process, which hardly needs human intervention. Using this partial conclusion, different machine learning techniques are studied and presented, also with their strengths and limitations. After the study, it can be concluded that the best technique to implement this kind of system is recurrent neural networks. An intrusion detection systems that hardly needs human intervention, can be developed and implemented, using this technique.
Palabras clave
Texto completo:
PDF (English)Enlaces refback
- No hay ningún enlace refback.
_________________________________________________________________________________________________________
La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Saber más
_________________________________________________________________________________________________________
INDEXACIÓN | |||||||||