Detección de anomalías basada en aprendizaje profundo: Revisión

Leyanis López Avila, Niusvel Acosta Mendoza, Andrés Gago Alonso

Resumen


La detección de anomalías es una técnica de Minería de Datos que permite el reconocimiento de nuevos patrones con comportamiento inusual, los cuales pueden ser traducidos como acciones no válidas o anómalas sobre los datos. La detección de anomalías ha permitido la identificación y prevención de actividades maliciosas como fraude e intrusiones, entre otros. El uso de técnicas tradicionales para la detección de anomalías ha reportado muy buenos resultados. Sin embargo, en los últimos años se han reportado resultados de mayor relevancia mediante el uso de técnicas de aprendizaje profundo. El objetivo de este reporte es la revisión de los principales y más recientes métodos del estado-del-arte para la detección de anomalías (fraude e intrusiones) basados en aprendizaje profundo (en inglés: Deep Learning), los cuales categorizamos según el tipo de red profunda que utilizan.


Palabras clave


Detección de anomalías basado en aprendizaje profundo, detección de fraude, detección de intrusiones, aprendizaje profundo

Texto completo:

PDF

Enlaces refback

  • No hay ningún enlace refback.




_________________________________________________________________________________________________________

La Universidad de las Ciencias Informáticas (UCI), a través del sello editorial Ediciones Futuro, publica los contenidos de la Revista Cubana de Ciencias Informáticas (RCCI) bajo licencia Creative Commons de tipo Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original.
_________________________________________________________________________________________________________

 INDEXACIÓN